Pluralidad, utilidad y eficiencia (3): Introducción a Instituciones políticas de Josep M. Colomer

por Erich Luna

2. Cómo se cuentan los votos.

Este segundo aspecto de la problemática que aborda Colomer, en lo relativo a las instituciones políticas, tiene en los electorados simples reglas que producen un único ganador absoluto. Ejemplos de estas reglas son la mayoría simple, la mayoría absoluta, las mayorías cualificadas y la unanimidad. Sin embargo, como ya ha sido visto siguiendo lo anteriormente tratado, dichas reglas van a ser bastante cuestionables en electorados complejos. En éstos

“las reglas de un solo ganador tienden a producir distribuciones muy desiguales de satisfacción política entre los ganadores y los perdedores y poca utilidad social. Como consecuencia de los incentivos creados por los perdedores absolutos para tratar de derrocar decisiones tan desfavorables, las reglas de un solo ganador también pueden inducir inestabilidad de la elección social” (91).

Es por esta situación compleja y complicada que Colomer ve con buenos ojos los aportes de la tradición utilitarista. Y es que el utilitarismo,

“orientado a conseguir la mayor satisfacción del mayor número de personas inspiró la búsqueda de reglas de votación alternativas. Entre éstas se incluyen las que producen múltiples ganadores, como la representación proporcional y otros mecanismos institucionales que favorecen las negociaciones y los acuerdos entre grupos diferenciados. Las reglas de múltiples ganadores distribuyen la satisfacción más ampliamente entre los diferentes grupos de la sociedad y tienden a producir decisiones más consensuales y estables y mayor utilidad social que las reglas de un solo ganador” (92).

En este sentido cabe resaltar dos aspectos para la estabilidad y eficiencia de la elección social: el número de dimensiones de temas y el número de alternativas. Si hay una sola dimensión (como el espectro “izquierda-derecha”), entonces el óptimo social coincidirá con la preferencia del votante mediano, ya que es el punto medio, lo cual implica que maximiza la utilidad social. Acá tenemos tres posibilidades: en primer lugar tenemos a las reglas muy inclusivas (como la unanimidad), que requieren de múltiples alternativas y dimensiones para que sea difícil encontrar un ganado estable. Los electorados complejos son el caso clave aquí. En segundo lugar tenemos a las reglas exclusivas (como la mayoría simple), con las cuales se obtendrán ganadores inestables e ineficientes. Finalmente, tenemos a las reglas de múltiples ganadores (como la representación proporcional), las cuales necesitan de coaliciones y negociación, siempre teniendo en cuenta que éstas necesariamente girarán en torno captar la votante mediano.

En relación a este análisis se tomarán en cuenta dos características de las reglas de votación. La primera regla es la “monotonicidad” la cual consiste en no dar desventaja a una alternativa que va en aumento. La segunda es la “independencia de las alternativas irrelevantes”. Esta regla sostiene que la alternativa ganadora no debe depender de alternativas perdedoras.

Dentro de las reglas de un solo ganador, tenemos primer a la unanimidad. Como ejemplos[5] tenemos a la tradicional elección del Papa, los parlamentos medievales, a las cortes de Aragón y Cataluña y el parlamento noble de Polonia. Sin embargo, donde podemos detenernos un poco más, por la vigencia y relevancia del caso, es en la comparación que se hace con las organizaciones intergubernamentales.

El caso ejemplar son las Naciones Unidas, si es que comparamos el Consejo de Seguridad y la Asamblea General. El Consejo de Seguridad tiene cinco miembros que tienen capacidad de veto, lo cual implica que en la práctica se requiere la unanimidad de estos cinco países para poder tomar una decisión. En cambio, la Asamblea General requiere de mayorías para tomar decisiones y los resultados son radicalmente distintos, en términos de eficiencia: La Asamblea termina aprobando unas trecientos cincuenta resoluciones en 1990, mientras que el Consejo menos de cien. Con lo cual la Asamblea ha ido asumiendo temas que antes solamente eran exclusivos del Consejo. No debe perderse de vista que en la Asamblea hay muchos más países y, sin embargo, hay una mayor eficiencia para tomar decisiones. Colomer atribuye a esta situación, sobre todo, el hecho de que la regla para elegir sea de mayoría y que no tenga que haber unanimidad.

Esta idea de unanimidad, recordemos, se remonta a la idea de una voluntad “divina” y que llega hasta la idea de Rousseau de “voluntad general”. Pero incluso versiones más moderadas de un solo ganador, como la mayoría relativa y la mayoría absoluta, pueden llegar a carecer de los rasgos de monotonicidad e independencia de alternativas irrelevantes, según Colomer. Como primer caso podemos señalar que la misma regla de mayoría absoluta puede generar problemas de fondo, esto es, hacer que los perdedores ganen.

El ejemplo formal más claro podría ser el siguiente: imaginemos que tenemos dos partidos, “izquierda” y “derecha”, y tenemos tres circunscripciones uninominales donde se gana por mayoría absoluta. Si en el primer distrito el resultado queda 60-40 para la derecha, en el segundo, 60-40 para la derecha y, en el tercero, 80-20 para la izquierda, tendremos como resultado que el partido de derecha tendrá dos escaños y el partido de izquierda solamente uno. Sin embargo, la cantidad de votos de la izquierda es en total 160 votos y la de la derecha únicamente de 140 votos, con lo cual se constata que la mayoría no siempre gana, ya que la delimitación de las circunscripciones tiene un peso fundamental para distribuir una cantidad determinada de puestos de representación entre una cantidad determinada de electores..

Resultados de este tipo son, por ejemplo[6], la España de la preguerra civil, la Australia de inicios del siglo XX y la Asamblea Nacional de la Tercera República francesa.

Sobre la mayoría relativa, debe recordarse que si bien es más eficiente llegar a resultados, no por ello éstos son más estables. Ello implica que la alternativa ganadora requiera de alternativas irrelevantes. Asimismo, dicha regla también puede generar perdedores que ganan.

Un ejemplo formal para ilustrar este caso es el siguiente: imaginemos que tenemos tres partidos, “izquierda”, “centro” y “derecha” y que tengamos tres circunscripciones uninominales que se rigen bajo la regla de la mayoría relativa. En la primera circunscripción el resultado es 35-25-40 para la derecha; la segunda tiene como resultado 35-30-40 para la derecha; finalmente, la tercera tiene como resultado 40-45-15 para el centro. Tenemos pues que la derecha tiene dos escaños, el centro tiene uno y la izquierda ninguno. Sin embargo, en cantidad de votos, tenemos que la derecha tiene noventa y cinco votos, el centro tiene cien votos y la izquierda cuenta con 110 votos, es decir, la mayoría relativa de los votos totales. Una vez más, la distribución de circunscripciones suele tener un papel central.

Ejemplos[7] de esta situación paradójica de la mayoría relativa son el Reino Unido, Nueva Zelanda, la India y Estados Unidos, así como algunos casos latinoamericanos que llevaron a autoritarismos y golpes de Estado.

Como ejemplo, nos remitiremos a explicitar lo esencial del análisis que Colomer realiza de las elecciones de inicios de la década de 1960 de nuestro país, donde se ganaba con un tercio de los votos. En la elección de 1962 Haya de la Torre obtuvo el 33% de los votos, Belaunde el 32% y Odría el 28%. Sin embargo, había candidatos menores de izquierda y de centro que obtuvieron menos votos: Castillo y Pérez Aldredge obtuvieron, cada uno, 1% y, en el centro, Cornejo obtuvo 3%. Esto constataría que si no hubiesen habido alternativas irrelevantes, entonces tanto Belaunde, como Haya habrían podido ganar. En las siguientes elecciones (1963) Belaunde, formando una alianza con los cristiano-demócratas, consiguió los votos que necesitaba y logró ganar la presidencia.

Ahora bien, nos queda revisar las reglas de múltiples ganadores. Éstas pueden darse por la representación proporcional y por la formación de coaliciones multipartidistas. La representación proporcional, además, requiere de formulas matemáticas que conviertan los votos en escaños. Una de las más populares es la propuesta por D’Hondt. En el caso de las coaliciones, éstas necesitan contar con el partido del votante mediano para ser exitosas. Ejemplos[8] de gabinetes multipartidistas eficientes son la Cuarta República francesa, la Primera República italiana, Holanda después de la Primera Guerra Mundial y la Alemania de la posguerra.

***

[5] Para un mayor desarrollo, cfr., pp. 99-111.

[6] Para un mayor desarrollo, cfr., pp. 115-129.

[7] Para un mayor desarrollo, cfr., pp. 133-150.

[8] Para un mayor desarrollo, cfr., pp. 158-174.

Anuncios